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A unified description of internal interfaces in oil-water-surfactant mixtures is proposed. Surfactant
degrees of freedom are explicitly taken into account in the form of a vector field. A general definition of
average curvatures in terms of the vector field is given. They are averages of the mean and Gaussian cur-
vatures and characterize globally the geometrical and topological structure of the internal interface. Itis
argued that this definition can be applied to both sharp and diffuse oil-water interfaces, in ordered phases
and in disordered microemulsions. A few examples concerning ordered phases are considered, and the
results for the average curvatures are compared with the standard approach, in which the interface is
modeled by an infinitely thin mathematical surface. It is also shown that the approach reduces to the
standard one in the case of well-defined surfactant monolayers. Finally, the definition of average curva-
tures is extended to the case of microscopic Hamiltonians.

PACS number(s): 61.20.Gy, 82.70.—y, 05.40.+j

Experimental results [1,2] show that in oil-water-
surfactant mixtures the surfactant particles form mono-
layers in various ordered phases (lamellar, hexogonal, cu-
bic, etc.) and in microemulsions. The microemulsion and
the homogeneous mixture cannot be distinguished ther-
modynamically. However, they have different structures
on a mesoscopic length scale (~100 A). This structure
can be observed in scattering experiments [1,2]. It con-
sists of oil- and water-rich regions separated by a thin
surfactant film (monolayer). The water-water structure
factor is well described by the Teubner-Strey expression
[2,3] S,u(k)=(k*+bk?’+c)” 1. In the real space the
correlation function exhibits exponentially damped oscil-
lations. Thus, the structure is characterized by two
lengths: the period of oscillations A, related to the size of
water- or oil-rich regions, and the correlation length &.
In the microemulsion S, (k) assumes the maximum at
k =k ,,,70. This corresponds to £ > A, i.e., to correlated
water and oil domains. When the concentration of the
surfactant decreases, k,,, moves towards zero and even-
tually at the Lifshitz line k,,, =0, which corresponds to
&£=A. When the surfactant concentration is further de-
creased, the ratio £/A decreases. The water-water corre-
lation function still oscillates, but the amplitude decreases
rapidly, and the water- and oil-rich regions become un-
correlated. eventually £/A=0 at the disorder line.
Beyond the disorder line the correlation function decays
monotonically.

Since surfactant monolayers existing in ordered phases
and in microemulsions with k_, 70 form well-defined
surfaces, it is natural to consider them as idealized,
infinitely thin mathematical surfaces [4,5]. Then one can
study geometrical and topological properties of such sur-
faces to obtain more information about the mesoscopic
structure of the system. This is basically the approach
used for membranes, which are described by two local in-
variants: the mean curvature H and the Gaussian curva-
ture K [6]. It is well known that the total curvature,
defined as the integral of K over the surface 4, is a topo-
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logical invariant related to the number of holes in the sur-

face. This relation is given by the Gauss-Bonnett
theorem

l = = —

5o J K(do=xp=201-p) (1)

where y is the Euler characteristic and p denotes the
number of holes. Various ordered phases formed by oil-
water-surfactant mixtures can be classified in terms of H
and K. For example, the micellar and reverse micellar
phases have H >0 and H <0, respectively, and K >0. In
phases with hexagonal symmetry, K =0 and H >0 or
H <0. The bicontinuous phases have K <0, which indi-
cates existence of holes in the structure and, in the case of
oil-water symmetry, H =0.

The microemulsion does not exhibit long-range or
quasi-long-range order characteristic for ordered phases.
Nevertheless, it does have an interesting and complex
mesoscopic structure observed in experiment. Topologi-
cally this structure is similar to that observed in ordered
bicontinuous phases. This means that the internal inter-
face should have K <0 and hence, Yz <0. To describe
this interface in terms of a mathematical surface we have
to assume that almost all surfactant molecules form a
monolayer separating oil- and water-rich regions. How-
ever, close to the disorder line this picture may not be
correct. Then one rather deals with diffuse interface and
possibly with surfactant patches in oil- and water-rich re-
gions [7]. In that case it is no longer justified to model
the interface, thickness of which can be comparable to
the characteristic length of the structure, by a single
mathematical surface. It would be more appropriate to
consider a continuous set of mathematical surfaces
reflecting in some way the distribution of surfactant mol-
ecules.

In this paper we propose a new approach to the prob-
lem of the internal interface in oil-water-surfactant mix-
tures. Since we do not make any particular assumptions
about the nature of the interface, this approach can be
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applied both to ordered phases and to the microemulsion,
even if the latter is between the Lifschitz line and the dis-
order line. Using this new approach we would like to ob-
tain more information about the geometrical and topo-
logical structure of the microemulsion. We show below
how the definitions of H and K for a single mathematical
surface can be extended to be applicable to both well-
defined surfactant monolayers and diffuse interfaces.

There are many models of oil-water-surfactant mix-
tures, both microscopic and using a mesoscopic level of
description. The latter are referred to as Landau-
Ginzburg models. An excellent review is presented in
Ref. [1]. For our present purpose it is sufficient to note
that usually one takes into account only translational de-
grees of freedom of oil and water molecules, while for
surfactant molecules also their orientations are specified.
Thus, using a mesoscopic level of description one consid-
ers a scalar field ¢(r) for the concentration difference be-
tween oil and water and a vector field u(r) describing sur-
factant degrees of freedom. In principle, a second scalar
field specifying the surfactant concentration p,(r) should
also be considered. However, simplified models with two
order parameters ¢(r) and u(r) have also been used [8].
Our model, defined below, is based on these two order pa-
rameters. Although u(r) does not contain full informa-
tion about the surfactant concentration, in the case of
surfactant molecules aligned along some common local
direction fi(r) one has

u(r)=p,(r)a(r) . ()

For a well-defined surfactant monolayer p,(r)=0 beyond
the monolayer and fi(r) is normal to the surface formed
by surfactant. However, in real systems orientations of
surfactant molecules fluctuate around their local average
orientation fi(r) and therefore (2) does not hold in gen-
eral. To take into account these fluctuations we split u(r)
as follows:

u(r)=s(r)+t(r) (3)

where the fields s and t satisfy conditions VXs=0 and
V-t=0. Because of the first condition there exists a po-
tential field ¥(r), such that s=V1. Thus, at each point
|

dk dk 3
3H =_i 1 e 3 (2 d8 k.
(SCHO==4 ) 5o f(zﬂ)f‘ ™82k,
and
1 dk, dk, 4
4K = 2 d8 k.
K)=5 [ o7 L @ Sk

where the n-body correlation function is defined as
G,(ky, ...,k )=(s;(k;)...5,(k,)) . (12a)
and the field s is related to the Fourier transform of s by
(k) =iks, (k) . (12b)

The above follows from the condition V Xs=0.

Ik3’(k1 sz)lz

s(r) is normal to the surface ¥(r)=const and we can
define fi(r)=s(r)/s(r), where s=|s|. The fluctuations
around the normal direction are described by the field
t(r). Since the potential field has been defined, it is possi-
ble to calculate at each point r the mean and Gaussian
curvatures corresponding to the surface ¥(r)=const. We
expect s(r) to be large in the region of the interface and
to decay to zero away from it. We note that to define H
and K it is not necessary to make any assumptions about
the thickness of the interface. In the cocrdinate frame in
which 1=(0,0,1), H and K are given by

H=LV 8,+V,4,), @)

K=V, ,V,8,—V,8, V.4, . (5)

Using the definition of i we can expresses the local mean
and Gaussian curvatures in the invariant form as follows:
s3r)H (r)=1(s*V-s—1s5-Vs?) (6)
and
s“(r)Ks(r)=%s,-s,4s,~jke,,,,,,V,,,sjV,,s,c , (7

where the index s has been used to indicate that the cur-
vatures depend on the field s(r). When the Hamiltonian
of the system is specified, the averages (s>H,) and
(s*K,) can, in principle, be calculated without any addi-
tional assumptions about formation of thin surfactant
films. To characterize global geometrical and topological
properties of the internal interface we introduce average
curvatures defined as follows:

2 [ dr(s*H,)
[ dr(s®)
v
and
_ f dr{*K,)
K="y "
der(s4)

where V is the volume of the system. It is often more
convenient to use the Fourier representation of s in ex-
pressions (8) and (9). We find that

()

9

k,k,k,G5(k,,kp,ks3) (10)

G4k ky k3 ky) , (11)

[

First we consider the case of ordered phases. The aver-
age distribution (s(r)) is then periodic in space. If the
fluctuations around (s(r)) are neglected then H and K
can be approximated by

_ f d l'( s >3H (s)
Hx—¥t —u——— (13)

der(s)3 ’
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— f dr(s>4K(s)
Ke~¥ — (14)

der(s)4

For thin surfactant films the integrals in (13) and (14) are
restricted to the region of the film and if {s(r))~const
across the film then

ﬁzﬁm=—“fAd0H(s) N (15)

—_ 1
K~K = — O-K s

where A4 denotes the mathematical surface of area | A|
modeling the surfactant film. It results from Eqgs. (15)
and (16) that in this case we recover the standard
definition of the average curvatures of a single mathemat-
ical surface, denoted here by H,, and K,,. Combination
of Egs. (1) and (16) gives K,, =27y /| A|. For periodic
structures it is conventional to consider a part of the total
surface A, of area | 4,|, contained in the unit cell and
define Xo-XglA4ol/| 4]. It results from (1) that in the
limit ¥V — o0, ¥o= —2p, where p, is the number of holes
per unit cell. Different structures are usually character-
ized by the ratio x,/ A, where 4og=|A4y|L;? and L, is
the linear size of the unit cell. Finally we obtain

L} _

2—: =20 (17)
Ao

It is interesting to compare H,, and K,, for various or-

dered phases with their counterparts H and K obtained

for a diffuse interface. We present a few examples further

on in this paper.

In order to calculate the average curvatures H and K
for ordered structures, we consider a Landau-Ginzburg
model of oil-water-surfactant mixtures, assuming symme-
try between oil and water. The free-energy functional de-
pends on two order-parameter fields: ¢(r) describing the
concentration difference between oil and water and a vec-
tor field u(r), representing surfactant degrees of freedom
[1,8]. Direction of u(r) describes local orientation of sur-
factant molecules in elementary volume d3r; the larger
|u(r)| is, the higher the surfactant density, and the more
surfactant molecules in d3r are oriented along common
direction ti(r). In a disordered phase average values of
both fields vanish. The free-energy density can be ap-
proximated by polynomials in ¢,u and their derivatives.
We assume the following form for F:

F= [dr[15(V$)*+£(§)+ Lrou+ 1K (V-u)?

+1K(VXUP+ 24— TuVg],  (1®)

where f(¢)=33a,;¢*. A similar model (with similar no-
tation) was considered in Ref. [8]. As in Ref. [8], we do
not consider ordering of pure surfactant, therefore only
the second power of u is included. In Ref. [8] the term
~[VXu(r)]? is absent. We include this term, because it
is of the same order as the term ~(V-u)2. Contrary to
the model of Ref. [8] and to the models with only one or-
der parameter ¢ (Refs. [9,1]), F given by (18) does not

contain a term ~ (V2¢)2, which appears in continuum ap-
proximation to the lattice models with competing first-
and second-neighbor interactions [10,1]. However, there
exists a class of lattice models in which only nearest-
neighbor interactions are assumed [11,1]. In these mod-
els the orientational degrees of freedom of surfactant par-
ticles are explicitly taken into account and the interac-
tions strongly depend on the orientation. Therefore in
continuum approximation to this class of lattice models,
the higher-order derivatives can be neglected, £ >0, and
the microemulsion structure should result from the am-
phiphilic interactions. In continuum approximation such
interactions are represented by the term ~—uV¢ (sur-
factant is preferentially located at the oil-water interface).
Indeed, one can easily calculate the structure factor
S44(k) and obtain a form similar to the Teubner-Strey ex-
pression. Even though £>0, the S,,(k) assumes max-
imum at k50 if J is sufficiently large. After integration
over the field u(r), the Laplacian term and £ <0 would
appear [8]. We also assume that in the presence of sur-
factant a, >0 in the disordered phase, and a, <0 corre-
sponds to oil- and water-rich phase coexistence. The
form of f(¢) allows for water-rich, oil-rich, and mi-
croemulsion phase coexistence. The term ~¢?u? de-
scribes the solubility of surfactant in oil and water. We
shall present more detail concerning this model in the
next paper [12]. Here we concentrate only on the average
curvatures H and K. After integration over the field t
(V-t=0) we obtain an effective free-energy functional of
fields ¢(r) and s(r):

Fq=[dr %g(v¢)2+f,(¢)+ %ros2+ %Kl(v-s)2

T2 00 g, 8 2
+o s s Vet —E g (VP | (19)

where the index r means “renormalized.” After rescaling
of the order parameters and F s we have {=r,=K,=1.
We do not study here the phase diagram in detail, but
consider only various ordered phases in the proximity of
the stability limit of the disordered phase. This corre-
sponds to extremely diffuse interface, of thickness compa-
rable to the size of water and oil domains.

In order to find the boundary of stability of the uni-
form phase, we introduce a field

Ty J k|
=50+ ==

k) .

The Gaussian part of F .4 takes the form

1 dk

Fol0),800]=5 [ -5

[(14+k2)|P(K)|?

+ A(k)|$(k)I*],
where
A(K)=(14+k>) " [(k2—a?)?+a,—a*]

and



52 DESCRIPTION OF THE GEOMETRICAL AND TOPOLOGICAL ... 599

, J 2—1—a, negative 7) gives, to second order in bifurcation analysis,
¥TT
The bifurcation takes place when A (k) changes sign, { s (k) Y —J (20a)
thus a?=4"a, or 7=2Va,+a,+1—J?>=0, and the
wave number corresponding to bifurcation k,=a.
Minimization of Fg just below the bifurcation (small and ~ where s is defined in (12b) and
_
ﬁ'/V_ 2 |¢(k)|2+ 2 8 Ek [ay—kE(g,+r)k, k] H¢(k ), (20b)
2 =k, 1+ kb k1=K, |
-

where |§(k)|?=0(|7|). We find that the disordered . X )
phase becomes unstable with respect to fluctuations of (s*K)="- 2 22238 2 k; |[ks(k, Xk,)|
the lamellar, hexagonal, or double-diamond symmetry. It ki Ky Ky Ky
turns out that the global minimum of F corresponds to 4 Bk;)
the lamellar phase, at least when the bifurcation analysis T (26b)

predicts a continuous transition, and the other two
phases are metastable. Nevertheless, it is instructive to
calculate H and K for all three phases. The instability
occurs for one of the following forms of ($(k)):

(i) lamellar symmetry

($(k))=¢,[65(k—k,P)+85(k+k,P)] , (21)

where P defines the direction normal to the layers,
(ii) hexagonal symmetry (water cylinders in oil or vice
versa)

3
($(k)) =14, 3 [8%(k—k,p;)+8%(k+k,$,)], (22

where P; (i =1,2,3) form an equilateral triangle, and
(iii) double-diamond symmetry (intertwined oil and wa-
ter tunnels)

4
(F(K)) =gy |(1+0) S 85(k—k,D;)

4
+(1—i) 3 85 (k+k,B,) | , (23)

where in this case p; (i =1,2,3,4) form tetrahedron. For
comparison we also consider a cubic crystal of oil and
water droplets arranged in two fcc lattices shifted with
respect to each other by half a period, i.e.,

(iv) cubic crystal (oil and water droplets)

($(k))= ¢02[SK’(k+kbp,)+8K’(k+kbp,)] (24)

where P; are the same as in the previous case.
To calculate H and K we approximate the n-body
correlation function by

Gulky, ..., k)= sy(kp)), .., (5y(k,)) 25)
Then Egs. (10) and (11) simplify to
F(k,)
<s3H)————J32228K’ zk k, k,k? H T -
k, k, k i l+k
1 72 73
(26a)

and

Using the above together with Egs. (20)—(24) we are able
to calculate H and K for the given ordered phase. For
the lamellar phase one easily sees that both H and K van-
ish, as expected. In the case of the two hexagonal phases
there are 12 contrlbutlons to the sum in Eq. (26a), for
which kl 1(2 . We thus have

(s3H>=¢%J3 ¢,, -

1+k,,

The denominator in (8) is computed with the help of Egs.
(12b), (20a), and (22). To find (s*K) we note that
Ik;-(k, Xk,)|*[1#d(k;)=0, since &(k;)#0 for vectors
within one plane [see (22)], for which, on the other hand,
|k;-(k; XKk,)|>=0. The results for the hexagonal phases
are thus

27)

The results are presented in a dimensionless form, i.e.,
KL32 /2w [see Eq. (17)] and HL, are calculated, where the
linear size of the unit cell, L,, is related to k, by
L,=41/k, in the case of the hexagonal phases.

This should be compared with the mathematical sur-
face (¢(r))=0, obtained from the Fourier transform
(22), which is approximately cylindrical with the curva-
ture H,,. The ratio of the mean curvatures is

—=0.6. (28)

Next we consider the double-diamond and fcc phases,
for which L,=27V'3/k,. Because of the oil-water sym-
metry H should vanish. Indeed, for k; =+tk,p i where P ; ;
form tetrahedron, we obtain []?¢(k; 857( 231( )=0, thus
from (26a) it follows that H=0. To find {(s*K ) we first
note that [p,-(P; XP;)|?=1¢ for i¥*j+k. There are 4
contributions to the sum in (26b) from all k",. =p I and 4!
from all k; =—9p; where k; ¥k,
For such vectors [[{d(k;)= —4¢%, for the

contributions

3 4
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dds structure and [[/#(k;)=¢* for the fcc structure. The
denominator in (9) is computed in a similar way. The re-
sults are as follows. For the dds phase we have

LO 20 ’
) (29)
glo__32
27 45

Again we compare this result with the one for the
mathematical surface (¢(r))=0 obtained from (23).
That surface has eight holes in the unit cell, hence
Xo=—16,and 4,~3.8 [1]. Using (17) we find the ratio

X <053, (30)
Km
Finally, for the cubic crystal of oil and water droplets
HL,=0,
~Ly 32
9 24 31
2r 81" L)
_L 0.49
K,

To obtain K,, we used the fact that in this structure there
are four spheres of radius L, /4 in the unit cell.

Note that in all cases the ratios H /H,, and K /K, are
positive and less than 1. This means that even though the
oil-water interfaces considered above are diffuse, they
have average curvatures of the same sign as those
modeled by the mathematical surface {¢(r))=0 or
(s(r))=max{(s ). The values less than 1 result from the
fact that the integrals in (13) and (14) are over a continu-
ous set of surfaces and the contribution of each surface to
H and K is weighted, respectively, by (s(r))* and
(s(r))* while H,, and K,, are calculated for a single sur-
face. When the oil-water interface becomes increasingly
sharp the ratios H /H,, and K /K, tend to unity. Thus,
in the case of thin surfactant films our prescription for
calculation of H and K reduces to the standard one, based
on a single mathematical surface {¢(r)) =0.

Although we have concentrated on the mesoscopic lev-
el of description, formulas (10) and (11) could, in princi-
ple, be applied to microscopic Hamiltonians. This, how-
ever, requires a microscopic definition of the field s(r).
We proceed as follows. First the field u(r) is defined:

u(n)= [ dap,(r,0)a (32)

where p (r,0)=3,;8(r—r;)8(w—w;) is the microscopic
density distribution of the position r and orientation & of
the surfactant molecule. Next, to obtain s(r) we have to
extract the curlless part of u(r). However, the micro-
scopic s(r) obtained in this way cannot be automatically
applied in Egs. (6)-(11) to calculate H and K because all
the field components and their derivatives are taken at
the same point [see Egs. (6) and (7)]. To avoid this
difficulty we introduce a microscopic cutoff A in the
Fourier representation of the § function, i.e.,

1 A ik(r—r;)
Splr—r;)=—— | "dk ! (33)
A (27T)d f .

hence

us(r)= 3 8,(r—r;)o; . (34)

Then s|(k) is_defined as the projection of @,(k) onto
the direction k. We think that the microscopic expres-
sions for H and K obtained from the procedure outlined
above, could be used in Monte-Carlo simulations.

To summarize, we have proposed a statistical-
mechanical generalization of the mean and Gaussian cur-
vatures of the internal interface in oil-water-surfactant
mixtures. In our approach no a priori assumption about
formation of a surfactant monolayer separating oil from
water is necessary. We only assume that the surfactant
degrees of freedom are described by a curlless vector field
s(r). The system is characterized by the average curva-
tures H and K and the process of averaging is both with
respect to s and over the space. As a test we have calcu-
lated H and K for a few ordered phases using a Landau-
Ginzburg model and compared their values with H,, and
K, obtained for a single mathematical surface
(¢(r))=0. In all cases we have found ‘qualitative agree-
ment between the description based on H,KandH,,K,,.
Moreover, the ratios H /H,, and K /K, tend to unity for
the structures with well-defined surfactant monolayers.
For a diffuse interface these ratios are less than 1. In gen-
eral, the absolute values of H and K are related to the
strength of surfactant fluctuations. These fluctuations
should be particularly important in the case of the mi-
croemulsion when {¢(r)) =0 and (s(r) =0 in the whole
space.

Even though the microemulsion is disordered, it does
not mean that A and K vanish. If the symmetry between
oil and water is assumed, H =0 but k0. Because of the
Gauss-Bonnet theorem I_(_ provides information about the
topological structure of the microemulsion. Even in the
case of a system close to the disorder line the description
based on H and K can be useful. The standard descrip-
tion of the microemulsion using the concept of a
mathematical surface defined by ¢(r)=0 is also possible
and has been applied in Monte Carlo simulations [13].
However, it does not distinguish between sharp and
diffuse interfaces, while our approach allows for a unified
description of both sharp and diffuse interfaces, in or-
dered and disordered phases. It is worth noting that the
same formalism can also be used in the case of a one
order-parameter model [9]. Then one simply defines
s(r)=V¢(r).

In a future paper [12] we shall present studies of H and
K in the microemulsion. In particular, it would be in-
teresting to study the behavior of the average curvatures
when the disorder line is approached from the Lifshitz
line. It would be reasonable to expect that they eventually
vanish when the mixture becomes homogeneous. Howev-
er, we do not know at present how this could occur. We
defer this problem to a future work.
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